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Lattice kinetic scheme for the incompressible viscous thermal flows on arbitrary meshes
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A lattice kinetic scheme was developed for the incompressible viscous thermal flows on arbitrary meshes.
The work was based on the lattice kinetic scheme proposed by Inamuro and the technique of Taylor series
expansion- and least-square–based lattice Boltzmann method~TLLBM !. Compared with the lattice Boltzmann
method, the lattice kinetic scheme can save the computer memory since there is no need to store the density
distributions. The implementation of the boundary condition is direct and just the same as the convectional
Navier-Stokes solvers. By using the idea of TLLBM, the lattice kinetic scheme can be applied on arbitrary
meshes, which makes this scheme suitable for practical applications. In order to validate this lattice kinetic
scheme used on arbitrary meshes, numerical simulations of the natural convection in a square cavity and the
natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder are
carried out, and the results are compared very well with available data in the literature.
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I. INTRODUCTION

In recent years, the lattice Boltzmann method~LBM ! has
been developed into an alternative promising tool for flu
mechanics. It has been widely used in many kinds of co
plex flows such as turbulent flow, multiphase flow, and m
croflow @1#. However, there are still some items in need
further study. One is the collision model. The Bhatnag
Gross-Krook~BGK! model with a single relaxation time i
usually used for the collision term. The shortcomings of
BGK model are pointed out in the works of d’Humieres@2#
and Lallemand and Luo@3#. The other is the boundary con
dition. The bounce-back scheme in the LBM was origina
taken from the LGA method. Although this heuristic schem
is very simple to implement, it is found to be the first ord
in the numerical accuracy at the boundaries@4,5#. In order to
improve the numerical accuracy, other boundary treatme
have been proposed. It appears, however, that the exten
of these treatments to the complex boundary surface is d
cult. Chenet al. @6# proposed a boundary condition using
second-order extrapolation scheme of the distributions in
flow to obtain the unknown particle distribution functions o
the boundaries. When the flow problems with complex
ometries, especially in the three dimensions, are enco
tered, the determination of the unknown particle direction
troublesome. All the implementations are not so direct si
on the boundaries the macroscopic variables, not the den
distributions, are given. Related to these two difficulties
lattice kinetic scheme for the incompressible viscous flo
was developed by Inamuro@7#. This scheme is based on th
idea that if the dimensionless relaxation time in the LB
with the BGK model is set to unity, the macroscopic va
ables such as velocity components and density instead o
density distribution functions become the dependent v
ables in the computation. As compared to the standard LB
this scheme can save computer memory because there
need to store the density distribution functions. The imp
1063-651X/2004/69~1!/016703~8!/$22.50 69 0167
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mentation of the boundary condition is very easy since
the boundaries only the macroscopic variables rather than
density distributions are needed as for the conventio
Navier-Stokes~NS! solvers. This feature is very useful whe
the flow problems with complex geometry are concerned

However, since this scheme is in the early stage of
development, its use is currently limited to the tw
dimensional uniform grids. When the flow problems wi
curved boundaries are encountered, the boundaries cann
well defined when the uniform grids are used. Even when
flows are confined in the regular geometries, nonunifo
grid is preferred at high Reynolds number or Rayleigh nu
ber. In order to meet these requirements and exploit the g
feature of the lattice kinetic scheme in the implementat
of the boundary conditions, its extension to the applicatio
on arbitrary meshes is necessary for its development in
competitive method. In this paper, we follow the idea
the Taylor series expansion- and least-square–based L
~TLLBM ! @8–10#, and propose a lattice kinetic scheme f
its application on the arbitrary mesh. The final form is
algebraic formulation, in which the coefficients only depe
on the coordinates of the mesh points and lattice veloc
and can be computed once in advance.

In order to validate our lattice kinetic scheme, the nume
cal simulations of the natural convection in a square cav
and the natural convection in a concentric annulus betwe
square outer cylinder and a circular inner cylinder are carr
out and compared with available data in the literature.

II. METHODOLOGY

Our lattice kinetic scheme is based on the original latt
kinetic scheme and the idea of TLLBM. Before introducin
our lattice kinetic scheme, we will give a brief descriptio
about the original lattice kinetic scheme.
©2004 The American Physical Society03-1
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A. Original lattice kinetic scheme

The evolution equation for the density distributionf a(x,t)
in the two dimensions with the particle velocityea can be
written as

f a~x,t1dt !5 f a~x2eadt,t !

2
f a~x2eadt,t !2 f a

eq~x2eadt,t !

t
,

is

d
re

n

01670
a50,1, . . . ,N, ~1!

wheret is the single relaxation time,f a
eq is the corresponding

equilibrium density distribution function,dt is the time step,
and N is the number of discrete particle velocities. On t
uniform grid, dt is chosen so that the particles travel on
lattice spacing during this time. When the particle veloc
model D2Q9, which is defined as
ea5H 0, a50

„cos@~a21!p/2#,sin@~a21!p/2#…, a51,2,3,4

&„cos@~a25!p/21p/4#,sin@~a25!p/21p/4#…, a55,6,7,8

~2!
ly

ions
-

is-
ss
hich

kes
is used, a suitable equilibrium distribution function for th
model is given by

f a
eq5warF113ea•V1

9~ea•V!2

2
2

3V2

2 G , ~3!

where w054/9, wa51/9 for a51,2,3,4, andwa51/36 for
a55,6,7,8. The macroscopic densityr and fluid velocityV
are calculated in terms of the density distributions as

r5 (
a50

8

f a , V5
1

r (
a50

8

f aea . ~4!

The pressurep is related to the density by

p5
r

3
~5!

and the kinematic viscosityy is given by

y5
1

3 S t2
1

2D dt. ~6!

When the dimensionless relaxation timet in Eq. ~1! is set
to unity, we can obtain

f a~x,t1dt !5 f a
eq~x2eadt,t !. ~7!

Then using Eq.~4!, we can get

r~x,t1dt !5 (
a50

8

f a
eq~x2eadt,t !,r~x,t1dt !V~x,t1dt !

5 (
a50

8

f a
eq~x2eadt,t !ea . ~8!

By using Eqs.~3! and~8!, one can calculate the density an
fluid velocity without the density distributions. The pressu
is obtained with Eq.~5! and the kinematic viscosity is give
by
y5
1

6
dt. ~9!

This may yield a relatively large viscosity.
In order to remove this shortcoming, one can flexib

choose the equilibrium distribution functionf a
eq provided

that the macroscopic equations recover the NS equat
@11#. In this work, the following equilibrium density distri
bution function given by Inamuro@7# is used:

f a
eq5warF113ea•V1

9~ea•V!2

2
2

3V2

2

1AdtS ]ud

]xg
1

]ug

]xd
DeadeagG . ~10!

The inclusion of the last term in the equilibrium density d
tribution function is to provide part of the viscous stre
tensor in the process of Chapman-Enskog expansion, w
can be seen in the following two equations:

Pab
~0!5( eaeb f eq5pdab1ruaub1

2

9
rAdtS ]ua

]xb
1

]ub

]xa
D ,

~11!

«Pab
~1!5«( eaeb f ~1!52rS t2

1

2D cs
2dtS ]ua

]xb
1

]ub

]xa
D

5
t51

2r
1

6
dtS ]ua

]xb
1

]ub

]xa
D . ~12!

The recovered momentum flux tensor in the Navier-Sto
equations is

Pab5Pab
~0!1«Pab

~1!5pdab1ruaub

1rS 2

9
A2

1

6D dtS ]ua

]xb
1

]ub

]xa
D . ~13!

So, the kinematic viscosity is given by
3-2
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y5S 1

6
2

2

9
AD dt ~14!

which can avoid the large viscosity by adjusting the para
eter of A. The equation system~8! and ~10! is called the
lattice kinetic scheme.

In the same way, the lattice kinetic scheme for the flu
temperatureT can be constructed as

T~x,t1dt !5 (
a50

8

ga
eq~x2eadt,t ! ~15!

with

ga
eq5waT@113ea•V#1waBdt~ea•“T!. ~16!

The thermal diffusivityx of the fluid is given by

x5S 1

6
2

1

3
BD dt. ~17!

B. New lattice kinetic scheme

In order to extend the use of the original lattice kine
scheme on the arbitrary mesh, the idea of the TLLBM
introduced in the original lattice kinetic scheme. T
TLLBM is based on the standard LBM, the technique
Taylor series expansion and least-squares optimization.
details of TLLBM can be found in@10#. This technique and
its derivation procedure can be applied in the lattice kine
scheme. We will show this in the following.

Suppose that the calculation point is at the grid po
P(x,y,t). As seen from Eq.~8!, for the original lattice ki-
netic scheme, the macroscopic density and velocity can
calculated as the function off a

eq(x2eaxdt,y2eaydt,t). For
a uniform lattice,dx5eaxdt, dy5eaydt. So, (x2eaxdt,y
2eaydt) is at the grid point and the values off a

eq(x
2eadt,t) can be easily determined from Eq.~10!. In other
words, Eq.~8! can be used to update the density and veloc
exactly at the grid points. However, for a nonuniform gr
(x2eaxdt,y2eaydt) is usually not at the grid point (x
2dx,y2dy). So the values off a

eq(x2eadt,t) cannot be ob-
tained from Eq.~10! directly since only the macroscopi
properties, such as the density and flow velocity, at ev
mesh point are known. As a result, the density and velocit
the new time level cannot be obtained using Eq.~8!. In order
to get the values off a

eq(x2eadt,t), the Taylor series expan
sion in the spatial direction is applied.

As shown in Fig. 1, for simplicity, the pointP represents
the calculation point (xP ,yP ,t), points A–H represent the
position (xP2eaxdt,yP2eaydt,t), and pointsP12P8 rep-
resent the position (xPi

,yPi
,t) with xPi

5xP2dxi ,yPi
5yP

2dyi . So, Eq.~8! gives
01670
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r~x,t1dt !5 (
a50

8

f a
eq~xa ,t !,r~x,t1dt !V~x,t1dt !

5 (
a50

8

f a
eq~xa ,t !ea , ~18!

where x05P, x15E, x25F, x35G, x45H, x55A, x6
5B, x75C, andx85D.

For the general case,A–H may not coincide with the
mesh pointsP12P8 . We will take the pointF as an ex-
ample.F may not coincide with the mesh pointP6 . Since
f a

eq(P6 ,t) is known, we can build the connection betwe
f a

eq(F,t) and f a
eq(P6 ,t) by using the Taylor series expansio

to the second order derivative terms. That is

f a
eq~P6 ,t !5 f a

eq~F,t !1DxP6

] f a
eq~F,t !

]x
1DyP6

] f a
eq~F,t !

]y

1
1

2
~DxP6

!2
]2f a

eq~F,t !

]x2

1
1

2
~DyP6

!2
]2f a

eq~F,t !

]y2

1DxP6
DyP6

]2f a
eq~F,t !

]x]y

1O@~DxP6
!3,~DyP6

!3#, ~19!

where DxP6
5xP6

2(xP2eaxdt), DyP6
5yP6

2(yP

2eaydt). For the two-dimensional case, this expansion
volves six unknowns, that is, one equilibrium distributio
function at the pointF, two first order derivatives, and thre
second-order derivatives at this point. To solve for these
knowns, six equations are needed to close the system.
can be done by applying the second order Taylor series
pansion at six points:P,P3 ,P4 ,P5 ,P6 ,P7 . The following
equation system can be obtained:

FIG. 1. Configuration at calculation pointP.
3-3
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f k85$sk%
T$W%5(

j 51

6

sk, jWj , k5P,P3 ,P4 ,P5 ,P6 ,P7 ,

~20!

where

f k85 f a
eq~xk ,yk ,t !,

$sk%
T5$1,Dxk ,Dyk ,~Dxk!

2/2,~Dyk!
2/2,DxkDyk%

$W%5$ f a
eq,] f a

eq/]x,] f a
eq/]y,]2f a

eq/]x2,]2f a
eq/]2y,

]2f a
eq/]x]y%T.

Our target is to find the first elementW15 f a
eq(F,t). Equa-

tion system~20! can be put into the following matrix form:

@S#$W%5$ f 8%, ~21!

where@S# is a matrix formed by the vector$sk%. In practical
applications, it was found that the matrix@S# might be sin-
gular or ill-conditioned using only six points~P, P3 , P4 ,
P5 , P6 , andP7). To overcome this difficulty and make th
method be more general, more points are added and
least-squares approach@12# was introduced to optimize th
overconstrained approximation by Eq.~20!. As a result, the
equation system for$W% becomes

$W%5~@S#T@S# !21@S#T$ f 8%5@A#$ f 8%. ~22!

From Eq.~22! we can have

f a
eq~F,t !5W15 (

k50

M21

a1,kf k8 , ~23!

wherea1,k are the elements of the first row of the matrix@A#,
which is determined by the coordinates of the mesh poi
the particle velocity, and time step size, and will not
changed in the calculation procedure, andM is the number of
the points used and should be greater than 6. In the pre
study, a structured grid is used, andM is taken as 9. This
means that for a reference mesh pointP, we need to selec
its eight neighboring points to compute the coefficients
Eq. ~23!. The above procedure shows the calculation
f a

eq(F,t) and the same procedure can be applied to calcu
the equilibrium distribution function at other points such
A, B, C, and so on. Then the density and velocity can
obtained by

r~x,t1dt !5 (
A–H

(
k50

M21

a1,kf k8 ,r~x,t1dt !V~x,t1dt !

5 (
A–H

(
k50

M21

a1,kf k8ea . ~24!

We can calculate the coefficients in Eq.~24! once and store
them in advance, so little computational effort is introduc
as compared with the original lattice kinetic scheme. On
other hand, Eq.~24! has nothing to do with the mesh stru
ture. It only needs the information of coordinates of the me
01670
he
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ent
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points. Thus, we can say that Eq.~24! can be consistently
used to any kind of mesh structure. But we have to indic
that, as compared to the original lattice kinetic scheme,
present method requires much more memory to store
coefficientsa1,k . This is the price paid for its application t
arbitrary mesh.

The same procedure can be applied to the calculation
ga

eq(x2eadt,t) so that the temperature can be obtained
we use the same particle velocity model and neighbor
points, the geometry matrix is the same as forf a

eq(x
2eadt,t), which can save the computational time a
memory space. The temperature can be obtained by

T~x,t1dt !5 (
A–H

(
k50

M21

a1,kgk8 , ~25!

where gk85ga
eq(xk ,yk ,t). Thus the equation systems~10!,

~14!, ~24! for the density, velocity, and~16!, ~17!, ~25! for the
temperature form our new lattice kinetic scheme.

III. BOUNDARY CONDITIONS

On the boundaries, usually the macroscopic variab
and their first order derivatives are specified. These con
tions can be implemented for the lattice kinetic scheme
the same way as for the conventional computational fl

FIG. 2. Configuration of natural convection in a squa
cavity.

FIG. 3. A typical nonuniform mesh in a square cavity.
3-4
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dynamics~CFD! solvers. This is one of the attracting a
vantages of the lattice kinetic scheme over the stand
LBM.

IV. NUMERICAL SIMULATIONS

In order to examine the accuracy of the lattice kine
scheme to solve the incompressible thermal flows on
arbitrary meshes, two test problems are calculated. One is
natural convection in a square cavity. The top and bott
walls are insulated and the side walls are maintained at c
stant but different temperatures. The problem definition a
the boundary conditions are displayed in Fig. 2. The nonu
form grid is used and a typical nonuniform grid is shown
Fig. 3. It can be seen clearly from Fig. 3 that the mesh po
are stretched near the walls to capture the thin bound
layer. In the middle part of the flow field, the mesh is re
tively coarse since the velocity and temperature gradients
not very large in this region. The other is the natural conv
tion in a concentric annulus between an outer square cylin
and an inner circular cylinder. Heat is generated uniform
within the circular inner cylinder with high temperatureT2
52, which is placed concentrically within the cold squa
cylinder with temperatureT151. A schematic view of the
geometry of this problem is shown in Fig. 4. The nonunifo
grid, in which mesh points are stretched near the walls
adopted. The reason to choose this case is to testify the

FIG. 4. Sketch of the physical domain.
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lidity of the lattice kinetic scheme to solve the thermal pro
lems with curved boundaries. When the curve boundary
involved and the bounce back boundary condition is to
used, as shown in@10#, the determination of the direction
where the density distributions are unknown is time consu
ing and troublesome. When the lattice kinetic scheme is
plied, this problem can be avoided.

For the natural convection, the Boussinesq approxima
is applied to the buoyancy force term. This means that
propertiesb andy are considered as constants, the densitr
is constant, and the buoyancy term is assumed to dep
linearly on the temperature,

rG5rbg0~T2Tm!j , ~26!

whereb is the thermal expansion coefficient,g0 is the accel-
eration due to the gravity,Tm5(T11T2)/2 is the average
temperature, in whichT1 andT2 are low and high tempera
tures, respectively, andj is the vertical direction opposite to
that of the gravity. Correspondingly, the external force te
3wag0b(T2Tm)eaydt is added to the density equilibrium
distribution function~10!.

The dimensionless parameters for the natural convec
problems are the Prandtl number Pr and the Rayleigh num
Ra, defined by

Pr5y/x, ~27!

Ra5
b~T22T1!g0L3

yx
5

bDTg0L3

yx
. ~28!

For the natural convection in a square cavity,L is the height
of the square cavity, while for the natural convection in
concentric annulus between an outer square cylinder an
inner circular cylinder,L is the side length of the squar
cylinder.

In Eq. ~28!, Abg0DTL is the characteristic velocity. To
ensure the code working properly in the near-incompress
regime, the value ofAbg0DTL should be carefully chosen
It is chosen to be 0.1 at low Rayleigh number and be 0.1
high Rayleigh number. This means that the Mach numbe
0.1 at low Rayleigh number and 0.15 at high Raylei
number.

Once the two dimensionless parameters Pr and Ra
given, the kinematic viscosity and thermal diffusivity a
determined by solving Eqs.~27! and ~28!. Then the two
tokes

75
0
64
5
0

0

TABLE I. Comparison of numerical results between the lattice kinetic scheme and a Navier-S
solver.

Ra 103 104 105 106

Method Present @13# Present @13# Present @13# Present @13#

Grid size 1013101 1013101 1513151 2013201
umax 3.653 3.649 16.224 16.190 34.467 34.736 64.779 64.7

Y 0.815 0.815 0.825 0.825 0.853 0.855 0.857 0.85
nmax 3.706 3.698 19.779 19.638 69.667 68.640 225.471 220.

X 0.176 0.180 0.121 0.120 0.066 0.065 0.037 0.03

Nu 1.118 1.118 2.250 2.245 4.533 4.523 8.900 8.80

ucmidu 1.176 1.175 5.090 5.075 9.118 9.117 16.640 16.27
3-5
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parametersA and B in Eqs. ~10! and ~16! can be deter-
mined through the relationships expressed by Eqs.~14!
and ~17!.

The convergence criterion for all the cases is set to

maxuA~ui , j
2 1n i , j

2 !n112A~ui , j
2 1n i , j

2 !nu

<1027,maxuTi , j
n112Ti , j

n u<1027, ~29!

FIG. 5. Streamlines for natural convection in a square cavity
Ra5103, 104, 105, and 106.

FIG. 6. Isotherms for natural convection in a square cavity
Ra5103, 104, 105, and 106.
01670
where n and n11 represent the old and new time leve
respectively.

A. Natural convection in a square cavity

Numerical simulations for the natural convection in
square cavity at a wide range of Rayleigh numbers from3

to 106 on the nonuniform grids were carried out.

1. Definition of the Nusselt number

Nusselt number Nu is one of the most important dime
sionless parameters in describing the convective heat tr
port. Its average in the whole flow domain and along t
vertical line ofx5x0 can be defined by

Nu5
L

xDT

1

L2 E
0

LE
0

L

qx~x,y!dxdy, ~30!

Nu5
L

xDT

1

L E
0

L

qx~x0 ,y!dy, ~31!

whereqx(x,y)5uT(x,y)2x(]/]x)T(x,y) is the local heat
flux in the horizontal direction.

2. Validation of the numerical results

Table I shows the numerical results of the maximum ho
zontal velocityumax on the vertical midplane of the cavit
and its locationY, the maximum vertical velocitynmax on the
horizontal midplane of the cavity and its locationX, the av-
erage Nusselt number throughout the cavityNu, and the
value of the stream function at the center point of the cav
for a wide range of Rayleigh numbers. The numerical res
of the Navier-Stokes equations given by Shu and Xue@13#
using the differential quadrature~DQ! method are also in-
cluded for comparison. From this table, we can see that
numerical results using the lattice kinetic scheme agree v
well with the benchmark results. This shows the validity
the use of the lattice kinetic scheme on the nonuniform gr

Figures 5 and 6 show the corresponding streamlines
isotherms at Ra5103, 104, 105, and 106. For Ra5103, the
stream function value is in the range of 0–1.176. The ma
mum stream functions are 5.096, 9.651, and 16.890 for
5104– 106, respectively. These plots agree well with tho
obtained by Shu and Xue@13#.

t

t

TABLE II. Comparison ofcmax N̄u for the natural convection in
an annulus between an outer square cylinder and a heated
circular cylinder.

Ra Grid

cmax N̄u

Present @15# Present @15#

104 201361 0.96 0.97 3.23 3.24
53104 2413121 4.83 4.82 4.03 4.02

105 2413121 8.19 8.10 4.89 4.86
3-6
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FIG. 7. Streamlines for the
natural convection in a concentri
annulus between a square out
cylinder and a circular inner cyl-
inder at Ra5104, 53104, and
105.
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B. Natural convection in a concentric annulus between an outer
square cylinder and an inner circular cylinder

Numerical simulations of the natural convection in a co
centric annulus between an outer square cylinder and an
ner circular cylinder were carried out at various Raylei
numbers. The geometry ratio between the square cylin
and circular cylinder is defined asrr 5L/2r i and is fixed at
2.5 in the present work.

1. Definition of the Nusselt number

The local heat transfer rate on the inner cylinder can
computed by

q5h~T2* 2T1* !52k
]T*

]n
, ~32!

whereT* is the dimensional temperature,T2* , T1* are, re-
spectively, the temperatures on the inner and outer wallh
represents the local heat transfer coefficient, andk is the
thermal conductivity. From Eq.~32! we can get

h52k
]T

]n
. ~33!

HereT is the nondimensional temperature, which is defin
as T5(T* 2T1* )/(T2* 2T1* ) and ]T/]n is the temperature
gradient in the direction normal to the boundary.

Since at the steady state, the Nusselt numbers along
inner and outer walls are the same, there is no need to
separate attention to the average Nusselt numbers for
outer and inner boundaries. The average Nusselt numbe
the inner boundary is determined by
01670
-
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N̄u5
h̄S

k
5

]T

]n
S, ~34!

whereS is defined as half of the circumferential length of th
inner cylinder surface due to the symmetry, which is t
same as in the work of Moukalled and Acharya@14# for the
purpose of comparison, andh̄ is the average heat flux alon
the boundary.

2. Validation of the numerical results

The numerical results of the maximum stream functi
cmax and the average Nusselt number Nū for Rayleigh num-
bers of 104 to 105 at the geometry ratio of 2.5 are shown
Table II. The benchmark results using the DQ method@15#
are also included for comparison. From this table we can
that the numerical results using new lattice kinetic sche
agree very well with the benchmark results. This valida
the use of the lattice kinetic scheme on the arbitrary mes
with curved boundaries.

The respective streamlines and isotherms are show
Figs. 7 and 8. For Ra5104, the stream function value is in
the range of~20.96–0.96!. The stream functions are in th
ranges of~24.83–4.83! and ~28.19–8.19! for Ra553104

and 105, respectively. They are in good agreement with t
plots shown in@15#.

V. CONCLUSIONS

A lattice kinetic scheme for the incompressible visco
thermal flows on the arbitrary meshes is developed follow
the original lattice kinetic scheme and the idea of TLLBM
The numerical results of the natural convection in a squ
cavity and the natural convection in a concentric annu
l
s
r

t

FIG. 8. Isotherms for natura
convection in a concentric annulu
between a square outer cylinde
and a circular inner cylinder a
Ra5104, 53104, and 105.
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between an outer square cylinder and an inner circular
inder validate the use of the lattice kinetic scheme on
arbitrary meshes. This scheme has the following good
tures. On one hand, it can save the memory space as
pared with TLLBM, since there is no need to store the d
u-
i

D

01670
l-
e
a-
m-
-

tribution functions. On the other hand, the implementation
the boundary condition becomes easier and more direct
pecially in the presence of curve boundaries. These g
features and the preliminary calculations show that t
scheme is very suitable for practical applications.
s
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