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Lattice kinetic scheme for the incompressible viscous thermal flows on arbitrary meshes
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A lattice kinetic scheme was developed for the incompressible viscous thermal flows on arbitrary meshes.
The work was based on the lattice kinetic scheme proposed by Inamuro and the technique of Taylor series
expansion- and least-square—based lattice Boltzmann méfha®M ). Compared with the lattice Boltzmann
method, the lattice kinetic scheme can save the computer memory since there is no need to store the density
distributions. The implementation of the boundary condition is direct and just the same as the convectional
Navier-Stokes solvers. By using the idea of TLLBM, the lattice kinetic scheme can be applied on arbitrary
meshes, which makes this scheme suitable for practical applications. In order to validate this lattice kinetic
scheme used on arbitrary meshes, numerical simulations of the natural convection in a square cavity and the
natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder are
carried out, and the results are compared very well with available data in the literature.
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[. INTRODUCTION mentation of the boundary condition is very easy since on
the boundaries only the macroscopic variables rather than the
In recent years, the lattice Boltzmann metia8M) has  density distributions are needed as for the conventional
been developed into an alternative promising tool for fluidNavier-StokegNS) solvers. This feature is very useful when
mechanics. It has been widely used in many kinds of comthe flow problems with complex geometry are concerned.
plex flows such as turbulent flow, multiphase flow, and mi- However, since this scheme is in the early stage of the
croflow [1]. However, there are still some items in need ofdevelopment, its use is currently limited to the two-
further study. One is the collision model. The Bhatnagar-dimensional uniform grids. When the flow problems with
Gross-Krook(BGK) model with a single relaxation time is curved boundaries are encountered, the boundaries cannot be
usually used for the collision term. The shortcomings of thewell defined when the uniform grids are used. Even when the
BGK model are pointed out in the works of d'Humie€§  flows are confined in the regular geometries, nonuniform
and Lallemand and LufB3]. The other is the boundary con- grid is preferred at high Reynolds number or Rayleigh num-
dition. The bounce-back scheme in the LBM was originallyper, In order to meet these requirements and exploit the good
taken from the LGA method. Although this heuristic schemesgaiyre of the lattice kinetic scheme in the implementation
is very simple to implement, it is found to be the first order ut the houndary conditions, its extension to the applications
in the numerical accuracy at the boundafi®s]. In order o ) aihitrary meshes is necessary for its development into a

improve the numerical accuracy, other boundary treatmen.téompetitive method. In this paper, we follow the idea of

have been proposed. It appears, however, that the extensi 0 Taylor series expansion- and least-square—based LBM
of these treatments to the complex boundary surface is difﬁ(TLLBM) [8-10], and propose a lattice kinetic scheme for
cult. Chenet al. [6] proposed a boundary condition using a. ' prop

second-order extrapolation scheme of the distributions in thglS at;))pll_caftlon c;n .the _arbn;gr%/ r;esh. ]:I];h(.e final f?rrg IS ar(;
flow to obtain the unknown particle distribution functions on &9€Praic formulation, in which the coetticients only depen

the boundaries. When the flow problems with complex ge°" the coordinates of the mesh points and lattice velocity,

ometries, especially in the three dimensions, are encourNd can be computed once in advance. ,
tered, the determination of the unknown particle directions is !N order to validate our lattice kinetic scheme, the numeri-
troublesome. All the implementations are not so direct sinc&@l simulations of the natural convection in a square cavity
on the boundaries the macroscopic variables, not the densignd the natural convection in a concentric annulus between a
distributions, are given. Related to these two difficulties, a>duare outer cylinder and a circular inner cylinder are carried
lattice kinetic scheme for the incompressible viscous flow<2ut and compared with available data in the literature.

was developed by Inamui@]. This scheme is based on the

idea that if the dimensionless relaxation time in the LBM

with the BGK model is set to unity, the macroscopic vari- Il. METHODOLOGY

ables such as velocity components and density instead of the

density distribution functions become the dependent vari- Our lattice kinetic scheme is based on the original lattice
ables in the computation. As compared to the standard LBMkinetic scheme and the idea of TLLBM. Before introducing
this scheme can save computer memory because there is nar lattice kinetic scheme, we will give a brief description
need to store the density distribution functions. The imple-about the original lattice kinetic scheme.
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A. Original lattice kinetic scheme

The evolution equation for the density distributiby(x,t)
in the two dimensions with the particle velocigy, can be
written as

fo(X,t+8t)="f,(X—e,dtt)
fo(X—e,0t,) — fEl(x—e,dt1)

T

0, a=0

€,=

is used, a suitable equilibrium distribution function for this

model is given by

9(e,-V)? 3V?

fei= 5 o | ©)

W,p| 1+3e,-V+

wherew,=4/9, w,=1/9 for «=1,2,3,4, andw,=1/36 for
a=5,6,7,8. The macroscopic densjtyand fluid velocityV
are calculated in terms of the density distributions as

8

8
=a§O fo, 2 (4)

paO

The pressure is related to the density by

p
P=3 5
and the kinematic viscosity is given by
1 1 st 5
v= § T— E . ( )

When the dimensionless relaxation timen Eq. (1) is set
to unity, we can obtain

f (x,t+8t)=fS%x—e,dt,t). (7)

Then using Eq(4), we can get

8
p(x,t+8t)= >, 89x—e,dt,t),p(x,t+ S)V(x,t+ 8t)
a=0

8
= 20 e x—e,ot,1)e,. (8)

By using Eqs(3) and(8), one can calculate the density and
fluid velocity without the density distributions. The pressure
is obtained with Eq(5) and the kinematic viscosity is given

by

(co§ (a—1)w/2],sin (a—1)7/2]),
v2(cog (a—5) w2+ ml4],sif (a—5) w/2+ w/4]),
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a=0,1,...N, 1

wherer is the single relaxation timé:%is the corresponding
equilibrium density distribution functionjt is the time step,
and N is the number of discrete particle velocities. On the
uniform grid, 6t is chosen so that the particles travel one-
lattice spacing during this time. When the particle velocity
model D2Q9, which is defined as

a=1,2,3,4 2
«=5,6,7,8
[
= ! ot 9
v= 6 . ( )

This may yield a relatively large viscosity.

In order to remove this shortcoming, one can flexibly
choose the equilibrium distribution functioff? provided
that the macroscopic equations recover the NS equations
[11]. In this work, the following equilibrium density distri-
bution function given by Inamurp7] is used:

9(e,-V)? 3V2
eq: -|- . + -
f.'=w,p|1+3e,-V 5 5
N e 10
axy &Xé‘ eaﬁeay ( )

The inclusion of the last term in the equilibrium density dis-
tribution function is to provide part of the viscous stress
tensor in the process of Chapman-Enskog expansion, which
can be seen in the following two equations:

2 au au
)= U ps 4 n g
> €,85%9=pd, s+ pU,ls 9PA&<&xﬁ i,
(11
1 Ju Ju
<1> D= _p| 7= = P
ell, 82 e.esf p(r 2)C &(axﬁ &Xa)
Tl 15t aua+(9u5 12
= ~Pg Xy o) (12

The recovered momentum flux tensor in the Navier-Stokes
equations is

0 1
Haﬁznggﬂn;g: PSapt pU,Ug

2 1 U, dug
+p|l=A— <]t —+ —]|.

9 6 Xg X, (13

So, the kinematic viscosity is given by
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(1 2A) ot (14
v=|-=Z
6 9 P4 P3 P2
which can avoid the large viscosity by adjusting the param-
eter of A. The equation systen8) and (10) is called the D\ C| /B
lattice kinetic scheme. /
In the same way, the lattice kinetic scheme for the fluid Ps \vi/ Py
temperaturel can be constructed as E /'nr-‘\ A
3 rd N
F G H
T(xt+68t)= >, ge%x—e,dt,t) (15)
a=0
Py P; Py
with
FIG. 1. Configuration at calculation poift
*9=w,T[1+3e,-V]+w,Bét(e, - VT). (16) .
p(X,t+ot)= > £Ux, 1), p(X,t+ SHV(X,t+ 8t)
The thermal diffusivityy of the fluid is given by a=0
8
11 = > %%x,,t)e,, (18
X=(6—§B>5t (17) @=0

where xg=P, X;=E, Xo=F, X3=G, X4=H, X5=A, Xg

= B, X7:C, andX8: D
For the general casé—H may not coincide with the
In order to extend the use of the original lattice kinetic mesh pointsP,;—Pg. We will take the pointF as an ex-

scheme on the arbitrary mesh, the idea of the TLLBM isample.F may not coincide with the mesh poif. Since

introduced in the original lattice kinetic scheme. The fS%Pg,t) is known, we can build the connection between

TLLBM is based on the standard LBM, the technique of {4 F,t) andf¢%Pg,t) by using the Taylor series expansion

Taylor series expansion and least-squares optimization. Thg the second order derivative terms. That is

details of TLLBM can be found if10]. This technigue and

its derivation procedure can be applied in the lattice kinetic eq eq

scheme. We will show this in the following. F9( Py 1) = FOUF 1)+ Ax ot (F.t) ot (F,t)
Suppose that the calculation point is at the grid point @ ©’ atly Pe  ox Y gy

P(x,y,t). As seen from Eq(8), for the original lattice ki- 2¢8Q

netic scheme, the macroscopic density and velocity can be n E(Ax )2‘9 fo(F.0)

calculated as the function df(x—e,dt,y—e,yét,t). For 27" ox?

a uniform lattice,6x=e,,6t, dy==e,,dt. So, X—e, oty 1

—e,yot) is at the grid point and the values df(x +§(Aype)

B. New lattice kinetic scheme

, TR 1)
R

—e,6t,t) can be easily determined from E@.0). In other ady

words, Eq.(8) can be used to update the density and velocity PEEYF 1)

exactly at the grid points. However, for a nonuniform grid, +AXp Ayp —————

(X—e.dt,y—e, dt) is usually not at the grid pointx( 6 776 dxdy

— 8X,y— dy). So the values ofY(x—e,dt,t) cannot be ob- +O[(Axp )3 (Ayp)%] (19)
6" ' 6" '

tained from Eq.(10) directly since only the macroscopic

properties, such as the density and flow velocity, at every

mesh point are known. As a result, the density and velocity afvhere AXp =Xp ~ (Xp—€axdt), Ayp.=Yp,~ (Yp

the new time level cannot be obtained using EB)._ In order —e,,t). For the two-dimensional case, this expansion in-

to get the values of ;%(x—e,dt,t), the Taylor series expan- yolves six unknowns, that is, one equilibrium distribution

sion in the spatial direction is applied. _ function at the poinf, two first order derivatives, and three
As shown in Fig. 1, for simplicity, the poirf represents  second-order derivatives at this point. To solve for these un-

the calculation pointXp,yp,t), pointsA—H represent the nowns, six equations are needed to close the system. This

position (Xp—€,x0t,Yp—€.ydt,t), and pointsP,—Pg rep-  can be done by applying the second order Taylor series ex-

resent the positionXp,,yp,t) With Xp =Xp—0X;,Yp,=Yp  pansion at six pointsP,Ps,P,,Ps,Ps,P;. The following

—8y;. So, Eq.(8) gives equation system can be obtained:
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6 or

fi={sd (Wi =3, sW;, k=P.P3.Pa.Ps.Po Py, u=0.v=0. 5>=0
(20)
where
u=0 u=
f|’(:fiq(xk7yk=t)1 v=0 v=0
{8dT={1A%, Ay, (Ax)Z12(Ay) 212 A Ay - T2
{WL={£89,0f Y ox, 0t 8% gy, 92t €Y 9x2, 62t Y 52y,
a?t8Y oxay}T.
Our target is to find the first elemeht;=fS%(F,t). Equa- aT
tion system(20) can be put into the following matrix form: u=0, v=0, 5=0
[SHWr={f"}, @D FIG. 2. Configuration of natural convection in a square

where[ S] is a matrix formed by the vectds,}. In practical ~ CaVity-
applications, it was found that the matfi$] might be sin- points. Thus, we can say that E@4) can be consistently

gular or ill-conditioned using only six point&P, Ps, Py, 0y, any kind of mesh structure. But we have to indicate

Ps, Pg, andPy). To overcome this difficulty and make the that, as compared to the original lattice kinetic scheme, the
method be more general, more points are added and the

least-squares approa¢h2] was introduced to optimize the present method requires mu_ch more memory to store the
overconstrained approximation by E@0). As a result, the coefficientsa, . This is the price paid for its application to

. arbitrary mesh.
equation system fofw} becomes The same procedure can be applied to the calculation of

(W= ([S]'[S]) Y [SI{f'}=[Al{f'}. (22) gc%(x—e,dt,t) so that the temperature can be obtained. If
we use the same particle velocity model and neighboring
From Eq.(22) we can have points, the geometry matrix is the same as figf(x
M—1 —e,ot,t), which can save the computational time and
FEUF,t) =W, = 2 ay, f! 23) memory space. The temperature can be obtained by
o [} - - Kk
k=0 M-1
wherea, , are the elements of the first row of the mafri], T(x,t+ét) :AZH kgo a1k » (25

which is determined by the coordinates of the mesh points,

the particle velocity, and time step size, and will not bewhere 9r=9%%xy,Yk.t). Thus the equation systent&0),
changed in the calculation procedure, &mds the number of  (14), (24) for the density, velocity, an€lL6), (17), (25) for the

the points used and should be greater than 6. In the presefdmperature form our new lattice kinetic scheme.
study, a structured grid is used, aMlis taken as 9. This

means that for a reference mesh pdmtwe need to select
its eight neighboring points to compute the coefficients in
Eq. (23). The above procedure shows the calculation of On the boundaries, usually the macroscopic variables
f¢9(F,t) and the same procedure can be applied to calculatand their first order derivatives are specified. These condi-
the equilibrium distribution function at other points such astions can be implemented for the lattice kinetic scheme in
A, B, G and so on. Then the density and velocity can bethe same way as for the conventional computational fluid
obtained by

IIIl. BOUNDARY CONDITIONS

M-1
p(x,t+80)= > > agpfl,p(xt+at)V(x,t+ )
A-H k=0

M-1
=> > ayfie,. (24)
A=H k=0

We can calculate the coefficients in EQ4) once and store
them in advance, so little computational effort is introduced
as compared with the original lattice kinetic scheme. On the
other hand, Eq(24) has nothing to do with the mesh struc-
ture. It only needs the information of coordinates of the mesh FIG. 3. Atypical nonuniform mesh in a square cavity.
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5 lidity of the lattice kinetic scheme to solve the thermal prob-

i lems with curved boundaries. When the curve boundary is
° g | involved and the bounce back boundary condition is to be

used, as shown if10], the determination of the directions

where the density distributions are unknown is time consum-
n r ing and troublesome. When the lattice kinetic scheme is ap-
plied, this problem can be avoided.
e — | L For the natural convection, the Boussinesq approximation
: / is applied to the buoyancy force term. This means that the

propertiesB and v are considered as constants, the density
| is constant, and the buoyancy term is assumed to depend
linearly on the temperature,

I pG=pBYo(T— T, (26)

whereg is the thermal expansion coefficiegy, is the accel-

FIG. 4. Sketch of the physical domain. eration due to the gravityl,=(T,+T,)/2 is the average
temperature, in whicfi; andT, are low and high tempera-
dynamics(CFD) solvers. This is one of the attracting ad- tUres, respectively, andis the vertical direction opposite to

vantages of the lattice kinetic scheme over the standarf@t of the gravity. Correspondingly, the external force term
LBM. 3W,0oB(T—Tm)e, ot is added to the density equilibrium

distribution function(10).
The dimensionless parameters for the natural convection

IV. NUMERICAL SIMULATIONS problems are the Prandtl number Pr and the Rayleigh number
In order to examine the accuracy of the lattice kineticR&: defined by
scheme to solve the incompressible thermal flows on the Pr=ly, (27)
arbitrary meshes, two test problems are calculated. One is the
natural convection in a square cavity. The top and bottom B(T,—TygoL® BATgL3
walls are insulated and the side walls are maintained at con- Ra= vy = vy (28)

stant but different temperatures. The problem definition and
the boundary conditions are displayed in Fig. 2. The nonunifor the natural convection in a square cavitys the height
form grid is used and a typical nonuniform grid is shown inof the square cavity, while for the natural convection in a
Fig. 3. It can be seen clearly from Fig. 3 that the mesh pointsoncentric annulus between an outer square cylinder and an
are stretched near the walls to capture the thin boundarinner circular cylinder,L is the side length of the square
layer. In the middle part of the flow field, the mesh is rela-cylinder.

tively coarse since the velocity and temperature gradients are In Eq. (28), VBgoATL is the characteristic velocity. To
not very large in this region. The other is the natural convecensure the code working properly in the near-incompressible
tion in a concentric annulus between an outer square cylindgegime, the value of/8g,ATL should be carefully chosen.
and an inner circular cylinder. Heat is generated uniformlyit is chosen to be 0.1 at low Rayleigh number and be 0.15 at
within the circular inner cylinder with high temperatufe high Rayleigh number. This means that the Mach number is
=2, which is placed concentrically within the cold square0.1 at low Rayleigh number and 0.15 at high Rayleigh
cylinder with temperaturd’;=1. A schematic view of the number.

geometry of this problem is shown in Fig. 4. The nonuniform  Once the two dimensionless parameters Pr and Ra are
grid, in which mesh points are stretched near the walls, igjiven, the kinematic viscosity and thermal diffusivity are
adopted. The reason to choose this case is to testify the vaetermined by solving Eq927) and (28). Then the two

TABLE I. Comparison of numerical results between the lattice kinetic scheme and a Navier-Stokes

solver.
Ra 16 10* 10° 10°
Method Present [13] Present [13] Present [13] Present [13]
Grid size  10k101 101x101 151x151 201x201
Upmax 3.653 3.649 16.224 16.190 34.467 34.736 64.779 64.775
Y 0.815 0.815 0.825 0.825 0.853 0.855 0.857 0.850
Vimax 3.706 3.698 19.779 19.638 69.667 68.640 225.471 220.64
X 0.176 0.180 0.121 0.120 0.066 0.065 0.037 0.035
Nu 1.118 1.118 2.250 2.245 4533 4.523 8.900 8.800
| Hrmil 1.176 1.175 5.090 5.075 9.118 9.117 16.640 16.270
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FIG. 5. Streamlines for natural convection in a square cavity at

Ra=10%, 10, 10°, and 16.

parametersA and B in Egs. (10) and (16) can be deter-
mined through the relationships expressed by Hdg)

and(17).
The convergence criterion for all the cases is set to

max(u?+ v )™ = (uf 4 )"

<10"",ma}T]; '~ TP|<1077, (29)

i
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TABLE Il. Comparison ofy,ax Nu for the natural convection in
an annulus between an outer square cylinder and a heated inner
circular cylinder.

‘ﬁmax ﬂu
Ra Grid Present [15] Present [15]
10* 201x 61 0.96 0.97 3.23 3.24

5x 10" 241x121 4.83 4.82 4.03 4.02
10° 241x121 8.19 8.10 4.89 4.86

wheren and n+1 represent the old and new time levels,
respectively.

A. Natural convection in a square cavity

Numerical simulations for the natural convection in a
square cavity at a wide range of Rayleigh numbers frof 10
to 1 on the nonuniform grids were carried out.

1. Definition of the Nusselt number

Nusselt number Nu is one of the most important dimen-
sionless parameters in describing the convective heat trans-
port. Its average in the whole flow domain and along the
vertical line ofx=x, can be defined by

L 1 (L(L
Nu:XATLZJ’O fo ax(X,y)dxdy, (30

Nu= - 1fL d 31
U—m[ OqX(Xan) Y, (31

whereq,(X,y) =uT(Xx,y) — x(d/dx) T(x,y) is the local heat
flux in the horizontal direction.

2. Validation of the numerical results

Table | shows the numerical results of the maximum hori-
zontal velocityun,a, On the vertical midplane of the cavity
and its locatiory, the maximum vertical velocity,,., on the
horizontal midplane of the cavity and its locatidh the av-
erage Nusselt number throughout the cavity, and the
value of the stream function at the center point of the cavity
for a wide range of Rayleigh numbers. The numerical results
of the Navier-Stokes equations given by Shu and XL@
using the differential quadratur@®Q) method are also in-
cluded for comparison. From this table, we can see that our
numerical results using the lattice kinetic scheme agree very
well with the benchmark results. This shows the validity of
the use of the lattice kinetic scheme on the nonuniform grids.

Figures 5 and 6 show the corresponding streamlines and
isotherms at Ra&10%, 10*, 10°, and 16. For Ra=1C®, the
stream function value is in the range of 0—1.176. The maxi-
mum stream functions are 5.096, 9.651, and 16.890 for Ra

FIG. 6. Isotherms for natural convection in a square cavity at= 10°~1CP, respectively. These plots agree well with those

Ra=10°, 10%, 1¢, and 16.

obtained by Shu and Xue 3].
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FIG. 7. Streamlines for the
natural convection in a concentric
annulus between a square outer
cylinder and a circular inner cyl-
inder at Ra10*, 5x10% and
10°.

B. Natural convection in a concentric annulus between an outer hs ﬁ

square cylinder and an inner circular cylinder u (34)

S,
. . . . k an
Numerical simulations of the natural convection in a con-

centric annulus between an outer square cylinder and an in- ) i ) .
ner circular cylinder were carried out at various RayleighWhereS'S_ defined as half of the circumferential Iength (_)f the
numbers. The geometry ratio between the square cylinddPner cylinder surface due to the symmetry, which is the
and circular cylinder is defined as=L/2r, and is fixed at Same as in the work of Moukalled and Achaiya] for the
2.5 in the present work. purpose of comparison, ardis the average heat flux along
the boundary.
1. Definition of the Nusselt number

The local heat transfer rate on the inner cylinder can be 2. Validation of the numerical results
computed by The numerical results of the maximum stream function
¥max and the average Nusselt numbeu for Rayleigh num-
aT* bers of 16 to 1(° at the geometry ratio of 2.5 are shown in
q=h(T3;-T7)= —k——, (32 Table Il. The benchmark results using the DQ methbs]

are also included for comparison. From this table we can see

that the numerical results using new lattice kinetic scheme
where T* is the dimensional temperatur®; , T are, re- agree very well with the benchmark results. This validates
spectively, the temperatures on the inner and outer walls, the use of the lattice kinetic scheme on the arbitrary meshes
represents the local heat transfer coefficient, &nd the  with curved boundaries.

thermal conductivity. From E32) we can get The respective streamlines and isotherms are shown in
Figs. 7 and 8. For Ral10%, the stream function value is in
aT the range of—0.96-0.96. The stream functions are in the
h=— k?n' (33 ranges of(—4.83—4.83 and (—8.19-8.19 for Ra=5x 10*

and 16, respectively. They are in good agreement with the
plots shown in15].
Here T is the nondimensional temperature, which is defined

as T=(T*—T7)/(T5—=T75) and dT/dn is the temperature

gradient in the direction normal to the boundary.

Since at the steady state, the Nusselt numbers along the A lattice kinetic scheme for the incompressible viscous
inner and outer walls are the same, there is no need to pakermal flows on the arbitrary meshes is developed following
separate attention to the average Nusselt numbers for thiae original lattice kinetic scheme and the idea of TLLBM.
outer and inner boundaries. The average Nusselt number fdihe numerical results of the natural convection in a square
the inner boundary is determined by cavity and the natural convection in a concentric annulus

V. CONCLUSIONS

FIG. 8. Isotherms for natural
convection in a concentric annulus
between a square outer cylinder
and a circular inner cylinder at
Ra=10% 5x10% and 16.
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between an outer square cylinder and an inner circular cyltribution functions. On the other hand, the implementation of
inder validate the use of the lattice kinetic scheme on thehe boundary condition becomes easier and more direct, es-
arbitrary meshes. This scheme has the following good feapecially in the presence of curve boundaries. These good
tures. On one hand, it can save the memory space as corfeatures and the preliminary calculations show that this
pared with TLLBM, since there is no need to store the dis-scheme is very suitable for practical applications.
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